|
|
from fastai.data.transforms import get_image_files, parent_label, RandomSplitter, Normalize
|
|
|
from fastai.learner import load_learner
|
|
|
from fastai.metrics import error_rate
|
|
|
from pathlib import Path
|
|
|
from fastai.data.block import CategoryBlock, DataBlock
|
|
|
from fastai.vision.all import *
|
|
|
from fastai.vision.augment import Resize, aug_transforms
|
|
|
from fastai.vision.core import imagenet_stats
|
|
|
from fastai.vision.data import ImageBlock
|
|
|
from fastai.vision.learner import cnn_learner, vision_learner
|
|
|
from torchvision.models import resnet34
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
def open_image(image_path):
|
|
|
img = Image.open(image_path)
|
|
|
img_cvt = img.resize((460,460))
|
|
|
return img_cvt
|
|
|
|
|
|
def predict_image(image_path):
|
|
|
# 加载模型
|
|
|
model = load_learner('G:\\Users\\15819\\Desktop\\model01.pkl')
|
|
|
# 读取图片并转换为Tensor
|
|
|
img = open_image(image_path) # 读取指定路径(image_path)下的图像文件
|
|
|
# 进行预测
|
|
|
pred_class, pred_idx, outputs = model.predict(img)
|
|
|
# 获取置信度
|
|
|
# 检查输出张量的维度
|
|
|
if outputs.dim() == 0:
|
|
|
confidence = float(outputs)
|
|
|
else:
|
|
|
confidence = float(outputs[pred_idx])
|
|
|
|
|
|
return pred_class, confidence
|
|
|
|
|
|
def train():
|
|
|
data_path = Path('G:\\Users\\15819\\Desktop\\TrainSet')
|
|
|
blocks = (ImageBlock, CategoryBlock)
|
|
|
batch_size = 32
|
|
|
dls = DataBlock(
|
|
|
blocks=blocks,
|
|
|
get_items=get_image_files,
|
|
|
splitter=RandomSplitter(),
|
|
|
get_y=parent_label,
|
|
|
item_tfms=Resize(460),
|
|
|
batch_tfms=[*aug_transforms(size=224, min_scale=0.75), Normalize.from_stats(*imagenet_stats)]
|
|
|
).dataloaders(data_path, num_workers=4, bs=batch_size)
|
|
|
|
|
|
model = vision_learner(dls, resnet34, metrics=error_rate)
|
|
|
model.fine_tune(5, freeze_epochs=3) #5 - 训练的轮次, 3 - 冻结的轮次
|
|
|
model.export('G:\\Users\\15819\\Desktop\\model01.pkl') # M20.02.pkl
|
|
|
|
|
|
def main():
|
|
|
train()
|
|
|
|
|
|
image_path = 'G:\\Users\\15819\\Desktop\\TrainSet\\SmallCar\\京M88888.jpg'
|
|
|
pred_class, confidence = predict_image(image_path)
|
|
|
print(f"图片类别: {pred_class}, 置信度: {confidence}")
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
train()
|