修复了找不到文件的诡异BUG。

master
UnknownObject 2 years ago
parent e64c5420cd
commit a06c2e98a3

@ -1,18 +1,57 @@
# 这是一个示例 Python 脚本。 # G:\Users\15819\Desktop\Images
# 按 Shift+F10 执行或将其替换为您的代码。 # 导入所需库
# 按 双击 Shift 在所有地方搜索类、文件、工具窗口、操作和设置。 from fastai.data.transforms import get_image_files, parent_label, RandomSplitter, Normalize
from fastai.learner import load_learner
from fastai.metrics import error_rate
from pathlib import Path
from fastai.data.block import CategoryBlock, DataBlock
from fastai.vision.all import *
from fastai.vision.augment import Resize, aug_transforms
from fastai.vision.core import imagenet_stats
from fastai.vision.data import ImageBlock
from fastai.vision.learner import cnn_learner, vision_learner
from torchvision.models import resnet34
from PIL import Image
# 设置数据路径和模型保存路径
data_path = Path('G:/Users/15819/Desktop/Images')
export_path = Path('G:/Users//15819/Desktop')
# 定义数据块
blocks = (ImageBlock, CategoryBlock)
# 创建数据加载器
batch_size=32
dls = DataBlock(blocks=blocks,
get_items=get_image_files,
splitter=RandomSplitter(),
get_y=parent_label,
item_tfms=Resize(460),
batch_tfms=[*aug_transforms(size=224, min_scale=0.75), Normalize.from_stats(*imagenet_stats)]
).dataloaders(data_path, num_workers=4, bs=batch_size)
# 定义模型结构
model = vision_learner(dls, resnet34, metrics=error_rate)
# 训练模型
model.fine_tune(5, freeze_epochs=3)#表示对模型进行微调fine-tuning微调的目的是利用预训练模型学到的特征来提高模型在新任务上的性能。
# 保存模型
model.export('G:/Users/15819/Desktop/model01.pkl')
# 定义预测函数
#def open_image(image_path):
#pass
def open_image(image_path):
img = Image.open(image_path)
return img
def print_hi(name): def predict_image(image_path):
# 在下面的代码行中使用断点来调试脚本。 # 加载模型
print(f'Hi, {name}') # 按 Ctrl+F8 切换断点。 model = load_learner('G:/Users/15819/Desktop/model01.pkl')
# 读取图片并转换为Tensor
img = open_image(image_path)#读取指定路径image_path下的图像文件
# 按装订区域中的绿色按钮以运行脚本。 # 进行预测
if __name__ == '__main__': pred_class, pred_idx, outputs = model.predict(img)
print_hi('PyCharm') # 获取置信度
confidence = max(outputs[pred_idx])
# 访问 https://www.jetbrains.com/help/pycharm/ 获取 PyCharm 帮助 return pred_class, confidence
# 测试预测函数
#debug image_path = 'G:/Users/15819/Desktop/Images/SmallCar/川A8K059.jpg'
pred_class, confidence = predict_image(image_path)
print(f"图片类别: {pred_class}, 置信度: {confidence}")

@ -0,0 +1,56 @@
from fastai.data.transforms import get_image_files, parent_label, RandomSplitter, Normalize
from fastai.learner import load_learner
from fastai.metrics import error_rate
from pathlib import Path
from fastai.data.block import CategoryBlock, DataBlock
from fastai.vision.all import *
from fastai.vision.augment import Resize, aug_transforms
from fastai.vision.core import imagenet_stats
from fastai.vision.data import ImageBlock
from fastai.vision.learner import cnn_learner, vision_learner
from torchvision.models import resnet34
from PIL import Image
def open_image(image_path):
img = Image.open(image_path)
return img
def predict_image(image_path):
# 加载模型
model = load_learner('G:/Users/15819/Desktop/model01.pkl')
# 读取图片并转换为Tensor
img = open_image(image_path) # 读取指定路径image_path下的图像文件
# 进行预测
pred_class, pred_idx, outputs = model.predict(img)
# 获取置信度
confidence = max(outputs[pred_idx])
return pred_class, confidence
def main():
data_path = Path('G:/Users/15819/Desktop/Images')
export_path = Path('G:/Users//15819/Desktop')
blocks = (ImageBlock, CategoryBlock)
batch_size = 32
dls = DataBlock(
blocks=blocks,
get_items=get_image_files,
splitter=RandomSplitter(),
get_y=parent_label,
item_tfms=Resize(460),
batch_tfms=[*aug_transforms(size=224, min_scale=0.75), Normalize.from_stats(*imagenet_stats)]
).dataloaders(data_path, num_workers=4, bs=batch_size)
model = vision_learner(dls, resnet34, metrics=error_rate)
model.fine_tune(5, freeze_epochs=3)
model.export('G:/Users/15819/Desktop/model01.pkl')
image_path = 'G:/Users/15819/Desktop/Images/SmallCar/川A8K059.jpg'
pred_class, confidence = predict_image(image_path)
print(f"图片类别: {pred_class}, 置信度: {confidence}")
if __name__ == '__main__':
main()
Loading…
Cancel
Save