You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

61 lines
2.1 KiB
Python

from fastai.data.transforms import get_image_files, parent_label, RandomSplitter, Normalize
from fastai.learner import load_learner
from fastai.metrics import error_rate
from pathlib import Path
from fastai.data.block import CategoryBlock, DataBlock
from fastai.vision.all import *
from fastai.vision.augment import Resize, aug_transforms
from fastai.vision.core import imagenet_stats
from fastai.vision.data import ImageBlock
from fastai.vision.learner import cnn_learner, vision_learner
from torchvision.models import resnet34
from PIL import Image
def open_image(image_path):
img = Image.open(image_path)
img_cvt = img.resize((460,460))
2 years ago
return img_cvt
def predict_image(image_path):
# 加载模型
model = load_learner('G:\\Users\\15819\\Desktop\\model01.pkl')
# 读取图片并转换为Tensor
img = open_image(image_path) # 读取指定路径image_path下的图像文件
# 进行预测
pred_class, pred_idx, outputs = model.predict(img)
# 获取置信度
# 检查输出张量的维度
if outputs.dim() == 0:
confidence = float(outputs)
else:
confidence = float(outputs[pred_idx])
return pred_class, confidence
def train():
data_path = Path('G:\\Users\\15819\\Desktop\\TrainSet')
blocks = (ImageBlock, CategoryBlock)
batch_size = 32
dls = DataBlock(
blocks=blocks,
get_items=get_image_files,
splitter=RandomSplitter(),
get_y=parent_label,
item_tfms=Resize(460),
batch_tfms=[*aug_transforms(size=224, min_scale=0.75), Normalize.from_stats(*imagenet_stats)]
).dataloaders(data_path, num_workers=4, bs=batch_size)
model = vision_learner(dls, resnet34, metrics=error_rate)
2 years ago
model.fine_tune(5, freeze_epochs=3) #5 - 训练的轮次, 3 - 冻结的轮次
2 years ago
model.export('G:\\Users\\15819\\Desktop\\model01.pkl') # M20.02.pkl
def main():
image_path = 'G:\\Users\\15819\\Desktop\\TrainSet\\SmallCar\\京M88888.jpg'
pred_class, confidence = predict_image(image_path)
print(f"图片类别: {pred_class}, 置信度: {confidence}")
if __name__ == '__main__':
train()