You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

80 lines
2.2 KiB
Markdown

8 years ago
# High Accuracy Chinese Plate Recognition Framework
8 years ago
8 years ago
### 介绍
8 years ago
This research aims at simply developping plate recognition project based on deep learning methods, with low complexity and high speed. This
8 years ago
project has been used by some commercial corporations. Free and open source, deploying by Zeusee.
8 years ago
8 years ago
HyperLPR是一个基于Python的使用深度学习针对对中文车牌识别的实现与开源的[EasyPR](https://github.com/liuruoze/EasyPR)相比它的检测速度和鲁棒性和多场景的适应性都要好于EasyPR。
### 特性
8 years ago
+ 单张720p图像单核Intel 2.2G CPU 识别时间140ms左右比EasyPR单核识别速度快近10倍的时间。
8 years ago
+ 识别率在EasyPR数据集上0-error达到70.2% 1-error识别率达到 89.6%
8 years ago
+ 检测方法在实时性、召回率、准确率上都优于MSER方法检测recall和easyPR持平。
8 years ago
+ 代码框架轻量总代码不到1k行。
### 依赖
8 years ago
+ Keras (>2.0.0)
+ Theano(>0.9) or Tensorflow(>1.1.x)
+ Numpy (>1.10)
+ Scipy (0.19.1)
+ OpenCV(>3.0)
+ scikit-image (0.13.0)
8 years ago
8 years ago
### 设计流程
8 years ago
8 years ago
> step1. 使用opencv 的 HAAR Cascade 检测车牌大致位置
8 years ago
>
8 years ago
> step2. Extend 检测到的大致位置的矩形区域
8 years ago
>
8 years ago
> step3. 使用类似于MSER的方式的 多级二值化 + RANSAC 拟合车牌的上下边界
8 years ago
>
8 years ago
> step4. 使用CNN Regression回归车牌左右边界
8 years ago
>
8 years ago
> step5. 使用基于纹理场的算法进行车牌校正倾斜
8 years ago
>
8 years ago
> step6. 使用CNN滑动窗切割字符
8 years ago
>
8 years ago
> step7. 使用CNN识别字符
8 years ago
8 years ago
### 简单使用方式
8 years ago
```python
from hyperlpr import pipline as pp
import cv2
image = cv2.imread("filename")
image,res = pp.SimpleRecognizePlate(image)
8 years ago
```
8 years ago
### 可识别和待支持的车牌的类型
8 years ago
- [x] 单行蓝牌
- [x] 单行黄牌
8 years ago
- [ ] 新能源车牌
- [ ] 双层黄牌
8 years ago
- [ ] 双层武警
- [ ] 双层军牌
- [ ] 农用车牌
- [ ] 白色警用车牌
- [ ] 使馆/港澳车牌
8 years ago
- [ ] 民航车牌
8 years ago
- [ ] 个性化车牌
8 years ago
8 years ago
### 测试样例
hyperlpr_test文件夹下
8 years ago
![image](./demo_images/test.png)
8 years ago
8 years ago
### 数据分享
车牌识别框架开发时使用的数据并不是很多,有意着可以为我们提供相关车牌数据。联系邮箱 455501914@qq.com。
8 years ago
### 获取帮助
8 years ago
8 years ago
+ HyperLPR讨论QQ群673071218, 加前请备注HyperLPR交流。