You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

58 lines
1.7 KiB
Markdown

8 years ago
# High Accuracy Chinese Plate Recognition Framework
8 years ago
8 years ago
### 介绍
8 years ago
This research aims at simply developping plate recognition project on deep learning methods, with low complexity and high speed. This
project has been by some commercial corporations. Free and open source, deploying by Zeusee.
8 years ago
8 years ago
HyperLPR是一个基于Python的使用深度学习针对对中文车牌识别的实现与开源的[EasyPR](https://github.com/liuruoze/EasyPR)相比它的检测速度和鲁棒性和多场景的适应性都要好于EasyPR。
### 特性
8 years ago
+ 单张720p图像单核Intel 2.2G CPU 识别时间140ms左右比EasyPR单核识别速度快近10倍的时间。
8 years ago
+ 识别率在EasyPR数据集上0-error达到70.2% 1-error识别率达到 89.6%
8 years ago
+ 检测方法在实时性、召回率、准确率上都优于MSER方法检测recall和easyPR持平。
8 years ago
+ 代码框架轻量总代码不到1k行。
### 依赖
+ Keras + Theano backend (Tensorflow data order)
+ Theano
+ Numpy
+ Scipy
+ OpenCV
+ scikit-image
8 years ago
### 设计流程
8 years ago
8 years ago
> step1. 使用opencv 的 HAAR Cascade 检测车牌大致位置
8 years ago
8 years ago
> step2. Extend 检测到的大致位置的矩形区域
8 years ago
8 years ago
> step3. 使用类似于MSER的方式的 多级二值化 + RANSAC 拟合车牌的上下边界
8 years ago
8 years ago
> step4. 使用CNN Regression回归车牌左右边界
8 years ago
8 years ago
> step5. 使用基于纹理场的算法进行车牌校正倾斜
8 years ago
8 years ago
> step6. 使用CNN滑动窗切割字符
> step7. 使用CNN识别字符
8 years ago
8 years ago
### 简单使用方式
8 years ago
```python
from hyperlpr import pipline as pp
import cv2
image = cv2.imread("filename")
image,res = pp.SimpleRecognizePlate(image)
8 years ago
```
### 测试样例
![image](./cache/demo1.png)
![image](./cache/demo2.png)
![image](./cache/demo3.png)
8 years ago
### 获取帮助
8 years ago
+ HyperLPR讨论QQ群673071218, 加前请备注HyperLPR交流。